
TOWARD SOPHISTICATED AGENT-BASED UNIVERSES
Statements to introduce some realistic features into classic AI/RL problems

Filipo Studzinski Perotto1

1Constructivist Artificial Intelligence Research Group, Toulouse, France
filipo.perotto@gmail.com

Keywords: Agency Theory, Factored Partially Observable Markov Decision Process (FPOMDP), Constructivist
Learning Mechanisms, Anticipatory Learning, Model-Based Reinforcement Learning.

Abstract: In this paper we analyze some common simplifications present in the traditional AI / RL problems. We
argue that only facing particular conditions, often avoided in the classic statements, will allow the
overcoming of the actual limits of the science, and the achievement of new advances in respect to realistic
scenarios. This paper does not propose any paradigmatic revolution, but it presents a compilation of several
different elements proposed more or less separately in recent AI research, unifying them by some theoretical
reflections, experiments and computational solutions. Broadly, we are talking about scenarios where AI
needs to deal with true situatedness agency, providing some kind of anticipatory learning mechanism to the
agent in order to allow it to adapt itself to the environment.

1 INTRODUCTION

Every scientific discipline starts by addressing
specific cases or simplified problems, and by
introducing basic models, necessary to initiate the
process of understanding into a new domain of
knowledge; these basic models eventually evolve to
a more complete theory, and little by little, the
research attains important scientific achievements
and applied solutions. Artificial Intelligence (AI) is a
quite recent discipline, and this fact can be easily
noticed by regarding its history in the course of the
years. If in the 1950s and 1960s AI was the stage for
optimistic discourses about the realization of
intelligence in machine, the 1970s and 1980s reveal
an evident reality: true AI is a feat very hard to
accomplish. This movement led AI to plunge into a
more pragmatic and less dreamy period, when
visionary ideas have been replaced by a (necessary)
search for concrete outcomes. Not by chance,
several interesting results have been achieved in
these recent years, and it is changing the skepticism
by a (yet timid) revival of the general AI field.

If on one hand the AI discourse mood has
changed like a sin wave, on the other hand the
academic practice of AI shows a progressive
increment of complexity with respect to the standard
problems. When the solutions designed to some
established problem become stable, known, and
accepted, new problems and new models are

proposed in order to push forward the frontier of the
science, moving AI from toy problems to more
realistic scenarios. Make a problem more realistic is
not just increasing the number of variables involved
(even if limiting the number of considered
characteristics is one of the most recurrent
simplifications). When trying to escape from AI
classic maze problems toward more sophisticated
(and therefore more complex) agent-based
universes, we are led to consider several
complicating conditions, like (a) the situatedness of
the agent, which is immersed into an unknown
universe, interacting with it through limited sensors
and effectors, without any holistic perspective of the
complete environment state, and (b) without any a
priori model of the world dynamics, which forces it
to incrementally discover the effect of its actions on
the system in an on-line experimental way; to make
matters worse, the universe where the agent is
immersed can be populated by different kinds of
objects and entities, including (c) other complex
agents, which can have their own internal models,
and in this case the task of learning a predictive
model becomes considerably harder.

In this paper, we use the Constructivist
Anticipatory Learning Mechanism (CALM), defined
in (Perotto, 2010), to support our assumption. In
other words, we shows that the strategies used by
this method can represent a changing of directions in
relation to classic and yet dominant ways. CALM is
able to build a descriptive model of the system



where the agent is immersed, inducting, from the
experience, the structure of a factored and partially
observable Markov decision process (FPOMDP).
Some positive results (Perotto, 2010), (Perotto et al.
2007), (Perotto; Alvares, 2007), (Perotto, 2011),
have been achieved due to the use of 4 integrated
strategies: (a) the mechanism takes advantage of the
situated condition presented by the agent,
constructing a description of the system regularities
relatively to its own point of view, which allows to
set a good behavior policy without the necessity of
“mapping” the entire environment; (b) the learning
process is anchored on the construction of an
anticipatory model of the world, which could be
more efficient and more powerful than traditional
“model free” reinforcement learning methods, that
directly learn a policy; (c) the mechanism uses some
heuristics designed to well structured universes,
where conditional dependencies between variables
exist in a limited scale, and where most of the
phenomena can be described in a deterministic way,
even if the system as a whole is not (a partially
deterministic environment); which seems to be
widely common in real world problems; (d) the
mechanism is prepared to discover the existence of
hidden or non-observable properties of the universe,
which enables it to explain a larger portion of the
observed phenomena. Following the paper, section 2
overviews the MDP framework and the RL tradition,
section 3 describes the CALM learning mechanism,
section 4 shows some experiments and acquired
results, and section 5 concludes the paper.

2 MDP+RL FRAMEWORK

The typical RL problem is inspired on the classic rat
maze experiment; in this behaviorist test, a rat is
placed in a kind of labyrinth, and it needs to find a
piece of cheese (the reward) that is placed
somewhere far from it, sometimes avoiding electric
traps along the way (the punishment). The rat is
forced to run the maze several times, and the
experimental results show that it gradually discovers
how to solve it. The computational version of this
experiment corresponds to an artificial agent placed
in a bi-dimensional grid, moving over it, and
eventually receiving positive or negative reward
signals. Exactly as in the rat maze, the agent must
learn to coordinate its actions by trial and error, in
order to avoid the negative and quickly achieve the
positive rewards. This computational experiment is
formally represented by a geographical MDP, where
each position in the grid corresponds to a state of the
process; the process starts in the initial state,
equivalent to the agent start position in the maze,
and it evolves until the agent reaches some final

reward state; then the process is reset, and a new
episode take place; the episodes are repeated, and
the algorithm is expected to learn a policy to
maximize the estimated discounted cumulative
reward that will be received by the agent in
subsequent episodes.

These classic RM maze configurations present at
least two positive points, when comparing to
realistic scenarios: the agent needs to learn actively
and on-line, it means, there is no previous separated
time to learn before the time of the life; the agent
must perform and improve its behavior at the same
time, without supervision, by “trial-and-error”.
However, this kind of experiment cannot be taken as
a general scheme for learning: on the one hand, the
simplifications adopted (in order to eliminate some
uncomfortable elements) cannot be ignored when
dealing with more complex or realistic problems; on
the other hand, there are important features lacking
on the classic RL maze, what makes difficult
comparing it to other natural learning situations.
Some of these simplifications and lacks are listed
below:

Non-Situativity: in the classic RL maze
configuration, the agent is not really situated in the
environment; in fact, the little object moving on the
screen (which is generally called agent) is
dissociated from the “agent as the learner”; the
information available to the algorithm comes from
above, from an external point of view, in which this
moving agent appears as a controllable object of the
environment, among the others. In contrast, realistic
scenarios impose the agent sensory function as an
imprecise, local, and incomplete window of the
underlying situation stated by the real situation.

Geographic Discrete Flat Representation: in
classic mazes, the corresponding MDP is created by
associating each grid cell to a process state; so, the
problem stays confined in the same two dimensions
of the grid space, and the system states represent
nothing more than the agent geographic positions. In
contrast, realistic problems introduce several new
and different dimensions to the problem. The basic
MDP model itself is conceived to represent a system
by exhaustive enumeration of states (a flat
representation), and it is not appropriated to
represent multi-dimensional structured problems; the
size of the state space grows exponentially up with
the number of considered attributes (curse of
dimensionality), which makes the use of this
formalism only viable for simple or small scenarios.

Disembodiment: in the classic configuration, the
agent does not present any internal property, it is
like a loose mind directly living in the environment;
in consequence, it can be only extrinsically
motivated, i.e. the agent acts in order to attain (or to
avoid) some determined positions into the space,



given from the exterior. In natural scenarios, the
agent has a “body” playing the role of an
intermediary between mind and external world; the
body also represents an “internal environment”, and
the goals the agent needs to reach are given from
this embodied perspective (in relation to the
dynamics of some internal properties).

Complete Observation: the basic MDP design the
agent as an omniscient entity; the learning algorithm
observes the system in its totality, it knows all the
possible states, and it can precisely perceive in what
state the system is at every moment, it also knows
the effect of its actions on the system, because in
general it is the only source of perturbation in the
world dynamics. These conditions are far from
common in real-world problems.

Episodic Life and Behaviorist Solution: in the
classic enunciation, the system presents initial and
final states, and the agent lives by episodes; when it
reaches a final state, the system restarts. Generally
this is not the case in real-life problems, where
agents live a unique continuous uninterrupted
experience. Also, solving a MDP is often
synonymous of finding an optimal (or near-optimal)
policy, and in this way most of the algorithms
proposed in the literature are model-free. However,
in complex environments, the only way to define a
good policy is “understanding” what is going on,
and creating an explicative or predictive model of
the world, which can then be used to establish the
policy.

2.1 The Basic MDP

Markov Decision Process (MDP) and its extensions
constitute a quite popular framework, largely used
for modeling decision-making and planning
problems (Feinberg, Shwartz, 2002). An MDP is
typically represented as a discrete stochastic state
machine; at each time cycle the machine is in some
state s; the agent interacts with the process by
choosing some action a to carry out; then, the
machine changes into a new state s', and gives the
agent a corresponding reward r; a given transition
function δ defines the way the machine changes
according to s and a. The flow of an MDP (the
transition between states) depends only on the
system current state and on the action taken by the
agent at the time. After acting, the agent receives a
reward signal, which can be positive or negative if
certain particular transitions occur.

Solving an MDP is finding the optimal (or near-
optimal) policy of actions in order to maximize the
rewards received by the agent over time. When the
MDP parameters are completely known, including
the reward and the transition functions, it can be
mathematically solved by dynamic programming

(DP) methods. When these functions are unknown,
the MDP can be solved by reinforcement learning
(RL) methods, designed to learn a policy of actions
on-line, i.e. at the same time the agent interacts with
the system, by incrementally estimating the utility of
state-actions pairs and then by mapping situations to
actions (Sutton, Barto 1998).

However, for a wide range of complex (including
real world) problems, the complete information
about the exact state of the environment is not
available. This kind of problem is often represented
as a Partially Observable MDP (POMDP)
(Kaelbling et al., 1998). The POMDP provides an
elegant mathematical framework for modeling
complex decision and planning problems in
stochastic domains in which the system states are
observable only indirectly, via a set of imperfect,
incomplete or noisy perceptions. In a POMDP, the
set of observations is different from the set of states,
but related to them by an observation function, i.e.
the underlying system state s cannot be directly
perceived by the agent, which has access only to an
observation o. We can represent a larger set of
problems using POMDPs rather than MDPs, but the
methods for solving them are computationally even
more expensive (Hauskrecht, 2000).

The main bottleneck about the use of MDPs or
POMDPs is that representing complex universes
implies an exponential growing-up on the state
space, and the problem quickly becomes intractable.
Fortunately, most of real-world problems are quite
well-structured; many large MDPs have significant
internal structure, and can be modeled compactly;
the factorization of states is an approach to exploit
this characteristic (Boutilier et al., 2000). In the
factored representation, a state is implicitly
described by an assignment to some set of state
variables. Thus, the complete state space
enumeration is avoided, and the system can be
described referring directly to its properties. The
factorization of states enables to represent the
system in a very compact way, even if the
corresponding MDP is exponentially large (Guestrin
et al. 2003). When the structure of the Factored
Markov Decision Process (FMDP) is completely
described, some known algorithms can be applied to
find good policies in a quite efficient way (Guestrin
et al., 2003). However, the research concerning the
discovery of the structure of an underlying system
from incomplete observation is still incipient
(Degris, Sigaud, 2010).

2.2 FPOMDP

The classic MDP model can be extended to include
both factorization of states and partial observation,
then composing a Factored Partially Observable



Markov Decision Process (FPOMDP). In order to be
factored, the atomic elements of the non-factored
representation will be decomposed and replaced by a
combined set of elements. A FPOMDP (Guestrin et
al., 2001), (Hansen; Feng, 2000), (Poupart;
Boutilier, 2004), (Shani et al., 2005), (Sim et al.,
2008), can be formally defined as a 4-tuple {X, C, R,
T}. The state space is factored and represented by a
finite non-empty set of system properties or
variables X = {X1, X2, ... Xn}, which is divided into
two subsets, X = P  H, where the subset P contains
the observable properties (those that can be accessed
through the agent sensory perception), and the
subset H contains the hidden or non-observable
properties; each property Xi is associated to a
specified domain, which defines the values the
property can assume; C = {C1, C2, ... Cm} represents
the controllable variables, composing the agent
actions; R = {R1, R2, ... Rk} is a set of (factored)
reward functions, in the form Ri : Pi  IR, and T =
{T1, T2, ... Tn} is a set of transformation functions, as
Ti : X  C Xi , defining the system dynamics. Each
transformation function can be represented by a
Dynamic Bayesien Network (DBN), which is an
acyclic, oriented, two-layers graph. The first layer
nodes represent the environment state in time t, and
the second layer nodes represent the next state, in
t+1 (Boutilier et al. 2000). A stationary policy π is a
mapping X → C where π(x) defines the action to be
taken in a given situation. The agent must learn a
policy that optimizes the cumulative rewards
received over a potentially infinite time horizon.
Typically, the solution π* is the policy that
maximizes the expected discounted reward sum

In this paper, we consider the case where the
agent does not have an a priori model of the
universe where it is situated (i.e. it does not have any
idea about the transformation function), and this
condition forces it to be endowed with some
capacity of learning, in order to be able to adapt
itself to the system. Although it is possible directly
learn a policy of actions, in this work we are
interested in model-based methods, through which
the agent must learn a descriptive and predictive
model of the world, and so define a behavior
strategy based on it. Learning a predictive model is
often referred as learning the structure of the
problem.

In this way, when the agent is immersed in a
system represented as a FPOMDP, the complete task
for its anticipatory learning mechanism is both to
create a predictive model of the world dynamics (i.e.
inducing the underlying transformation function of
the system), and to define an optimal (or sufficiently
good) policy of actions, in order to establish a
behavioral strategy. Degris and Sigaud (2010)
present a good overview of the use of this

representation in artificial intelligence, referring
algorithms designed to learn and solve FMDPs and
FPOMDPs.

3 ANTICIPATORY LEARNING

In the artificial intelligence domain, anticipatory
learning mechanisms refer to methods, algorithms,
processes, machines, or any particular system that
enables an autonomous agent to create an
anticipatory model of the world in which it is
situated. An anticipatory model of the world (also
called predictive environmental model, or forward
model) is an organized set of knowledge allowing
inferring the events that are likely to happen. For
cognitive sciences in general, the term anticipatory
learning mechanism can be applied to humans or
animals to describe the way these natural agents
learn to anticipate the phenomena experienced in the
real world, and to adapt their behavior to it (Perotto,
2012).

When immersed in a complex universe, an agent
(natural or artificial) needs to be able to compose its
actions with the other forces and movements of the
environment. In most cases, the only way to do so is
by understanding what is happening, and thus by
anticipating what will (most likely) happen next. A
predictive model can be very useful as a tool to
guide the behavior; the agent has a perception of the
current state of the world, and it decides what
actions to perform according to the expectations it
has about the way the situation will probably
change. The necessity of being endowed with an
anticipatory learning mechanism is more evident
when the agent is fully situated and completely
autonomous; that means, when the agent is by itself,
interacting with an unknown, dynamic, and complex
world, through limited sensors and effectors, which
give it only a local point of view of the state of the
universe and only partial control over it. Realistic
scenarios can only be successfully faced by an agent
capable of discovering the regularities that govern
the universe, understanding the causes and the
consequences of the phenomena, identifying the
forces that influence the observed changes, and
mastering the impact of its own actions over the
ongoing events.

3.1 CALM Mechanism

The constructivist anticipatory learning mechanism
(CALM), detailed in (Perotto, 2010), is a mechanism
developed to enable an agent to learn the structure of
an unknown environment where it is situated, trough
observation and experimentation, creating an



anticipatory model of the world. CALM operates the
learning process in an active and incremental way,
and learn the world model as well as the policy at
the same time it actuates. The agent has a single
uninterrupted interactive experience into the system,
over a theoretically infinite time horizon. It needs
performing and learning at the same time.

The environment is only partially observable
from the point of view of the agent. So, to be able to
create a coherent world model, the agent needs,
beyond discover the regularities of the phenomena,
also discover the existence of non-observable
variables that are important to understand the system
evolution. In other words, learning a model of the
world is beyond describing the environment
dynamics, i.e. the rules that can explain and
anticipate the observed transformations, it is also
discovering the existence of hidden properties (once
they influence the evolution of the observable ones),
and also find a way to deduces the dynamics of these
hidden properties. In short, the system as a whole is
in fact a FPOMDP, and CALM is designed to
discover the existence of non-observable properties,
integrating them in its anticipatory model. In this
way CALM induces a structure to represent the
dynamics of the system in a form of a FMDP
(because the hidden variables become known), and
there are some algorithms able to efficiently
calculate the optimal (or near-optimal) policy, when
the FMDP is given (Guestrin et al., 2003).

CALM tries to reconstruct, by experience, each
transformation function Ti, which will be
represented by an anticipation tree. Each anticipation
tree is composed by pieces of anticipatory
knowledge called schemas, which represent some
perceived regularity occurring in the environment,
by associating context (sensory and abstract), actions
and expectations (anticipations). Some elements in
these vectors can undertake an “undefined value”.
For example, an element linked with a binary sensor
must have one of three values: true, false or
undefined (represented, respectively, by ‘1’, ‘0’ and
‘#’). The learning process happens through the
refinement of the set of schemas. After each
experienced situation, CALM updates a generalized
episodic memory, and then it checks if the result
(context perceived at the instant following the
action) is in conformity to the expectation of the
activated schema. If the anticipation fails, the error
between the result and the expectation serves as
parameter to correct the model. The context and
action vectors are gradually specialized by
differentiation, adding each time a new relevant
feature to identify more precisely the situation class.
The expectation vector can be seen as a label in each
“leaf” schema, and it represents the predicted
anticipation when the schema is activated. Initially

all different expectations are considered as different
classes, and they are gradually generalized and
integrated with others. The agent has two
alternatives when the expectation fails. In a way to
make the knowledge compatible with the
experience, the first alternative is to try to divide the
scope of the schema, creating new schemas, with
more specialized contexts. Sometimes it is not
possible and the only way is to reduce the schema
expectation.

CALM creates one anticipation tree for each
property it judges important to predict. Each tree is
supposed to represent the compete dynamics of the
property it represents. From this set of anticipation
trees, CALM can construct a deliberation tree, which
will define the policy of actions. In order to
incrementally construct all these trees, CALM
implements 5 methods: (a) sensory differentiation, to
make the tree grow (by creating new specialized
schemas); (b) adjustment, to abandon the prediction
of non-deterministic events (and reduce the schemas
expectations) (c) integration, to control the tree size,
pruning and joining redundant schemas: (d) abstract
differentiation, to induce the existence of non
observable properties; and (e) abstract anticipation,
to discover and integrate these non-observable
properties in the dynamics of the model.

Sometimes some disequilibrating event can be
explained by considering the existence of some
abstract or hidden property in the environment,
which could be able to differentiate the situation, but
which is not directly perceived by the agent sensors.
So, before adjusting, CALM supposes the existence
of a non-sensory property in the environment, which
it will represent as a abstract element. Abstract
elements suppose the existence of something beyond
the sensory perception, which can be useful to
explain non-equilibrated situations. They have the
function of amplifying the differentiation
possibilities.

4 EXPERIMENTS

In (Perotto et al., 2007) the CALM mechanism is
used to solve the flip problem, which creates a
scenario where the discovery of underlying non-
observable states are the key to solve the problem,
and CALM is able to do it by creating a new abstract
element to represent these states. In (Perotto, 2010)
and (Perotto; Álvares, 2007) the CALM mechanism
is used to solve the wepp problem, which is an
interesting RL situated bi-dimensional grid problem,
where it should learn how to behavior considering
the interference of several dimensions of the
environment, and of its body. Initially the agent does
not know anything about the world or about its own



sensations, and it does not know what consequences
its actions imply. Figure 1 shows the evolution of
the mean reward comparing the CALM solution
with a classic Q-Learning implementation (where
the agent have the vision of the entire environment
as flat state space), and with a situated version of the
Q-Learning agent. We see exactly two levels of
performance improvement. First, the non-situated
implementation (Classic Q) takes much more time to
start an incomplete convergence, and it is vulnerable
to the growing of the board. Second, the CALM
solution converges much earlier than Q-Learning,
taken in its situated version, due to the fact that
CALM quickly constructs a model to predict the
environment dynamics, and it is able to define a
good policy sooner.
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5 CONCLUSIONS

Over the last twenty years, several anticipatory
learning mechanisms have been proposed in the
artificial intelligence scientific literature. Even if
some of them are impressive in theoretical terms,
having achieved recognition from the academic
community, for real world problems (like robotics)
no general learning mechanism has prevailed. Until
now, the intelligent artifacts developed in
universities and research laboratories are far less
wondrous than those imagined by science fiction.
However, the continuous progress in the AI field,
combined with the progress of informatics itself, is
leading us to a renewed increase of interest in the
search for more general intelligent mechanism, able
to face the challenge of complex and realistic
problems.

A necessary changing of directions in relation to
the traditional ways to state the problems in AI is
needed. The CALM mechanism, presented in
(Perotto, 2010) has been used as an exemple of it,
because it provides autonomous adaptive capability
to an agent, enabling it to incrementally construct
knowledge to represent the regularities observed
during its interaction with the system, even in non-
deterministic and partially observable environments.
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